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Abstract
It has been shown recently (Holzapfel et al 2001 J. Phys. Chem. Ref. Data 30
515–29) that equations of state (EOS) data for simple metals like Cu,
Ag and Au can be described most accurately on the base of a modified
Mie–Grüneisen model including intrinsic anharmonicities. In contrast to
commonly applied parametric EOS forms, which use only temperature
dependent parameters, V (T ), K (T ) and K ′(T ), in the same parametric form,
the present approach describes the thermal pressure more accurately and
allows therefore to extrapolate more safely into wider ranges of pressure and
temperature. Starting from the phonon density of state and a separate modelling
of zero temperature and thermal contributions including quasiharmonic and
intrinsically anharmonic contributions, the low energy part of the phonon
density of states is represented by a modified pseudo-Debye model,which needs
only one additional Einstein frequency for the high energy part. This optimised
model is successfully applied to describe not only the EOS of Cu, Ag and Au,
but also of other simple solids like NaCl and MgO, which are of special interest
for pressure measurements in wide ranges of pressure and temperature.

1. Introduction

Equations of state (EOS), not only as isothermal p(V , T ) relations near ambient temperature,
but also for wide ranges in temperature have become needed more urgently in recent years
in many high pressure studies, where the EOS for some simple substances serve as scales
for the determination of pressure by means of x-ray diffraction. Due to the lack of an
accurate absolute pressure scale for pressures above 5 GPa, a solid theoretical and experimental
background for the EOS of many different calibrants can help to reduce the uncertainties in
the currently used ‘practical’ pressure scales based primarily on semi-empirical EOS forms
with input from ultrasonic measurements at ambient pressure and limited data from shock
wave experiments. In the process of linking these data together to generate reliable p(V , T )

EOS for wide ranges in pressure and temperature, some theoretical considerations can help to

0953-8984/04/140963+10$30.00 © 2004 IOP Publishing Ltd Printed in the UK S963

http://stacks.iop.org/JPhysCM/16/S963


S964 U Ponkratz and W B Holzapfel

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

Temperature (K)

p th
(G

P
a)

210

220

230

240

250

260

K
0

(G
P

a)

0.0084

0.0086

0.0088

Al2O3

V
(n

m
3 /a

to
m

)

0.0

0.2

0.4

0.6

0.8

1.0

c V
(3

k B
/a

to
m

)

Figure 1. The specific heat, isothermal bulk modulus, atomic volume and thermal pressure for
Al2O3. The squares correspond to values calculated from experimental data (C p from [16]; all
other data from [17]); solid curves correspond to fits using the anharmonic Mie–Grüneisen approach
described in the text.

establish a better foundation for optimized EOS forms. This approach uses all the available
experimental data at ambient pressure, which include the temperature dependence of the
specific volume, V0(T ), the thermal expansivity, α0(T ), the bulk modulus, K0(T ), and the
specific heat, Cp0(T ). Experimental high pressure studies with several of these calibrants
together under the same pressure and temperature conditions provide then an opportunity
to check the internal consistency and probably also the absolute accuracy of these practical
pressure scales.

In a first attempt along these lines [1], the EOS for Cu, Ag and Au were determined for wide
ranges in pressure and temperature. A comparison with previous EOS data indicated thereby
that the previous scales included rather large uncertainties, especially at high temperature.
Due to the fact that the EOS formulations for metals include additional uncertainties in the
contributions from the conduction electrons, the present study analyses the EOS data of several
simple insulating materials, which may be especially useful as pressure reference materials.



Equations of state for wide ranges in pressure and temperature S965

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

Temperature (K)

p t
h
(G

P
a)

120

130

140

150

160

170

K
0

(G
P

a)

0.0092

0.0094

0.0096

0.0098

0.0100

V
(n

m
3 /a

to
m

)

0.0

0.2

0.4

0.6

0.8

1.0

MgO

C
V

(3
k B

/a
to

m
)

Figure 2. The specific heat, isothermal bulk modulus, atomic volume and thermal pressure for
MgO. The squares correspond to values calculated from experimental data (C p from [16]; all other
data from [17, 18]; values below 300 K for KS from [19]); solid curves correspond to fits using the
anharmonic Mie–Grüneisen approach described in the text.

2. The Mie–Grüneisen approach

In contrast to parametric EOS forms, which usually present isothermal p(V , T ) relations with
temperature dependent parameters (V0(T ), K0(T ), K ′

0(T ), K ′′
0 (T ), . . .), the Mie–Grüneisen

approach [2–7] divides the total pressure

p(V , T ) = pg(V ) + pth(V , T )

into the pressure at zero temperature, the ground state pressure pg(V ) and an explicit thermal
contribution pth(V , T ). For insulators, the thermal pressure is dominated by the contribution
from phonon excitations, represented in the Grüneisen approximation by

pph(V , T ) = γθ(V ) × 3Nk(θ(V )/V )uph(T/θ).



S966 U Ponkratz and W B Holzapfel

This Grüneisen approach represents all the phonon frequencies by just one characteristic
frequency νθ or by the corresponding characteristic temperature

θ = hνθ/k

with Planck’s h and Boltzmann’s k. Grüneisen assumed that θ(V ) depends only on volume and
not on temperature at constant volume, and introduced the later called Grüneisen parameter

γθ = −∂ ln θ/∂ ln V |T ,

which shows by definition also only a volume dependence. Most seriously, Grüneisen assumed
that the volume dependence of the scaled internal energy uph(T/θ) is represented perfectly
by the volume dependence of θ(V ), which means that uph(t) depends only on the scaled
temperature t = T/θ and not explicitly on volume. For accurate representations of EOS data
at high temperature, this quasi-harmonic approximation needs extra corrections for additional
‘intrinsic’ anharmonicities [3–8], for instance by the use of an anharmonic correction of the
characteristic temperature in the form

θa(V , T ) = θ(V )(1 − A(V )u(T/θ(V )))

with the anharmonicity parameter A(V ) and, as we will see later, with the additional parameter

γA(V ) = −d ln A/d ln V �= 0.

If one works out the effects of A and γA on all the thermodynamic relations [8], one finds
that one has to distinguish between three different Grüneisen parameters, γθ(V ), γtb(t, V ) and
γth(t, V ) with

γtb(t, V ) = γθ(V ) − A(V )γA(V )u(t)

and

γth(t, V ) = γθ(V ) − 2A(V )γA(V )u(t)

with the definition of the thermobaric Grüneisen parameter by

γtb(V , T ) = pph(V , T )V/Uph(V , T )

and the thermal Grüneisen parameter by

γth(V , T ) = α(V , T )V KT (V , T )/CV (V , T ).

With this approach, the ambient pressure data for α0(T ), V0(T ), KT 0(T ) and CV 0(T ) can be
used to determine also A and γA at ambient pressure. These parameters enter into γtb(V , T )

and thus also into the determination of the thermal pressure [1, 6–10].
At this point one should notice that the Mie–Grüneisen approach does not yet fix the

functional form of the scaled thermal energy u(t). Most commonly the Debye model with
its rigorous assumptions on the shape of the phonon density of states (DOS) [11] is used to
determine the functional form of u(t). However, it has been shown that the combination of
a mathematically simpler pseudo-Debye form with one (or several) Einstein terms [1, 6–10]
gives better results in the representation of all the ambient pressure data. For this reason, an
optimized pseudo-Debye–Einstein (opDE) form [10] is also used here for the present evaluation
of the EOS data.
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Figure 3. The specific heat, isothermal bulk modulus, atomic volume and thermal pressure for
NaCl. The squares correspond to values calculated from experimental data (C p from [16]; all other
data from [17]; values below 300 K for KS from [19]); solid curves correspond to fits using the
anharmonic Mie–Grüneisen approach described in the text.

3. The optimized pseudo-Debye–Einstein model

In comparison with the phonon DOS of the Debye model a slightly more realistic representation
of the phonon DOS is easily obtained, if one uses two characteristic frequencies or two related
temperature parameters. In fact, it is common practice [12] to represent some part of the
low frequency phonon DOS by a Debye approximation with the addition of one or several
Einstein frequencies for the high frequency part. Computationally it is however more elegant
to replace the Debye contribution by a ‘pseudo-Debye’ contribution [13], which corresponds
to a bell shaped form of the phonon DOS and represents a much simpler function for the
phonon internal energy with the correct T and T 4 behaviour at high and low temperatures,
respectively. In a first attempt along this direction [13], a simple pseudo-Debye (SPD) form
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Figure 4. The specific heat, isothermal bulk modulus, atomic volume and thermal pressure for
KCl. The squares correspond to values calculated from experimental data (C p from [16]; all other
data from [17]); the solid curves correspond to fits using the anharmonic Mie–Grüneisen approach
described in the text.

was tested for the normalized internal energy of the phonons uSPD = Uph/(3Nkθ) with the
normalized temperature t = T/θ and neglecting zero-point contributions for the moment:

uSPD(t) = t4/(a + t)3

where a = (5/π4)1/3 = 0.3716 results with θ = θDacc in a perfect fit of the Debye CVD at very
low temperatures. A better fit of the Debye CVD over a wide range in temperature is obtained
however if one uses a modified pseudo-Debye form, uMPD, which shows a more favourable
behaviour at intermediate temperatures:

uMPD(t) = t4/(a0 + t3)

and results in an excellent fit of the Debye CVD when just one additional Einstein term
with the frequency ratio f = νE/νD = θE/θD is used in the corresponding optimized
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Figure 5. The specific heat, isothermal bulk modulus, atomic volume and thermal pressure for
CaO. The squares correspond to values calculated from experimental data (C p from [16]; all other
data from [17]); the solid curves correspond to fits using the anharmonic Mie–Grüneisen approach
described in the text.

pseudo-Debye–Einstein form [10]:

uopDE(t, f ) = gt4/(a0g + t3) + (1 − g) f/(e f/t − 1)

with the weight of the MPD term g = 0.068 and a0 = 0.0434. For the Debye case the
frequency ratio f is constrained in this opDE model to

f = (3/4)(1 − g4/3)/(1 − g).

However, for real solids this ratio is determined by the high temperature limit of the Debye
temperature:

θD∞ = θDacc(g4/3 + (1 − g) f × 4/3).
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Figure 6. The thermal expansivity for MgO at different pressures and temperatures.

This means that the present opDE model can be applied also to solids with phonon DOS which
deviate significantly from the Debye case; and no (artificial) temperature dependence occurs
in this quasi-harmonic approximation for the characteristic (Mie–Grüneisen) temperature θ

within this opDE model.

4. EOS forms for the cold pressure pg(V )

It has been discussed in various places [1, 6–10] that the uncertainties in the extrapolation of
common EOS forms can be avoided by the use of an adapted polynomial expansion of the
order L, given by

pAPL = 3K0x−5(1 − x) exp(c0(1 − x))

(
1 + x

L∑
2

ck(1 − x)k−1

)
.

In this form the parameter c0 is constrained to the value c0 = − ln(3K0/pFG0), where
pFG0 = aFG(Z/V0)

5/3 represents the pressure of a Fermi gas with the total electron number Z
in the (atomic) volume V0, and aFG = 0.023 37 GPa nm5 is a universal constant for the Fermi
gas. Typically, the second-order form AP2 with

c2 = (3/2)(K ′
0 − 3) − c0

fits the EOS data for regular solids perfectly with very small values of c2 for simple AB
compounds [14]. If one uses however the third-order form AP3 with the additional parameter
c3, one can also fit the cohesive energy E0.

5. The software for the calculation and fitting of the EOS data

The present program [15] is based on the intention to calculate not only the EOS data but
also all the thermophysical properties via a state-of-the-art representation of the free energy
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F(V , T, N) (as a thermodynamic potential of the system) with a minimum number of free
parameters. This approach needs the following parameters for insulators:

I For the energy and pressure of the ground state
I.1 The cohesive energy contribution : E0

I.2 The equilibrium volume per atom (or cell) : V0

I.3 The corresponding bulk modulus : K0

I.4 Its pressure derivative : K ′
0

I.5 The number of electrons per atom (or cell) : Z

II For the phonon contributions
II.1 The acoustic Debye temperature : θDacc = θ

II.2 The Grüneisen parameter of θDacc : γθ

II.3 For θD∞/θDacc a frequency ratio : f
II.4 The explicit anharmonicity parameter : A
II.5 The Grüneisen parameter of A : γA

Table 1. Refined parameters for MgO, CaO, NaCl, KCl and Al2O3 from the TEOSfit program.

Tr = 300 K MgO CaO NaCl KCl Al2O3

Z 20 28 28 36 50
V0(Tr) per atom (nm−3) 0.009 333 0.013 90 0.022 44 0.031 23 0.008 504
K0(Tr) (GPa) 162 110.5 23.9 17 252
K ′

0(Tr) 4.1 4.8 5.4 5.5 5.0
θ (K) 777 464 277 189 842
f 0.821 0.663 0.798 0.938 0.845
γ0 (�0 Barton–Stacey) 1.44 1.21 1.56 1.38 1.29
γ0 (�0 free form) 1.54 1.29 1.61 1.40 1.32
�0 (Barton–Stacey) 0.508 0.309 0.432 0.35 0.3
�0 (free fit) 1.434 1.154 0.883 0.97 0.713
A −6.9 × 10−3 8.5 × 10−3 −1.9 × 10−3 2.78 × 10−3 2.27 × 10−3

γA A (�0 Barton–Stacey) −0.190 −0.041 2 −0.0605 −0.008 03 −0.014 59
γA A (�0 free fit) 0.032 4 −0.000 61 0.0157 0.009 86 0.016 30

The present software includes two programs:

(i) The program TEOSfit determines the phonon parameters (II.1–II.5) in correlated fits of
the atomic volume V0(T ), the thermal expansion α0(T ), the specific heat Cp0(T ) and the
adiabatic bulk modulus KS0(T ) at ambient pressure as input data.

(ii) The program TEOScalc uses the refined parameters from TEOSfit together with the
parameters for one isotherm (I.1–I.5) for the reference temperature Tr (=300 K) to
calculate all the thermodynamic functions, e.g. the p(V , T ) for any pressure and
temperature, whereby the reasonable range is constrained to temperatures below the
melting curve.

Results of TEOSfit for MgO, CaO, NaCl, KCl and Al2O3 are shown in figures 1–5 and the
refined parameters are given in table 1. Since the contribution of the thermal pressure to the
total pressure for a series of isotherms does not show up clearly in one figure, figure 6 shows an
example of the calculation of the thermal expansivity for MgO. This example illustrates that
the thermal expansivity decreases strongly with pressure and the classical range is widened
with respect to the quantum regime. A detailed comparison with previous data for the high
temperature behaviour of MgO and NaCl is in progress.
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6. Conclusion

The explicit anharmonic contributions for the present simple insulating materials are very small
in comparison with those for the previously studied rare gas solids [9]. From this point of view,
the EOS of the present materials do not encounter large uncertainties in their extrapolations to
high temperature and are therefore very useful for pressure determinations at high temperature.
We found that the values K ′

0, γ0, �0 and γA are strongly correlated. When the values for K ′
0 are

taken from the literature [13, 20–22] the Barton–Stacey form does not always lead necessarily
to best fits. For all materials in the present paper the use of the fixed Barton–Stacey form for
�0 produces rather large values for γA A. A free form of �0 always gives better results. One
may notice that even the Mie–Grüneisen case AγA = 0, in combination with a free fit of �0,
leads to better results than the fixed Barton–Stacey form for �0.
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